Friday, November 11, 2011

The Dirichlet Problem for Various Types of Boundaries and Boundary Data

Presented by: Dr. Ronald Walker, Assistant Professor of Mathematics

Date/Time: Thursday, November 17, 2011, 12:00 to 1:00 PM
Location: W212 Olmsted

All faculty and students are invited!
We look forward to see you…
Light sandwiches & refreshments will be served.

Abstract: The Dirichlet problem is a classic boundary value problem in partial differential equations. Given continuous boundary data, Dirichlet solutions are guaranteed to exist and to be unique for a broad class of domains. Also it is known that if the domain is the unit disk (or more generally an ellipse), then polynomial boundary data will yield polynomial Dirichlet solutions. In this talk, we will explore several generalizations and variations of this latter result, such as cases where the boundary data is rational or entire, or over other domains.

No comments:

Post a Comment